In one new study of 1000 human genomes, Sriram Sankararaman and David Reich of Harvard Medical School and colleagues found that Neanderthal DNA is most common in regions of the genome with the greatest genetic variability, making them a prime target for natural selection. While Neanderthal DNA may make up only 1.6 to 1.8 per cent of the Eurasian genome, it punches above its weight in terms of biological impact, says Reich (Nature, DOI: 10.1038/nature12961).
Joshua Akey and Ben Vernot of the University of Washington in Seattle have analysed the Neanderthal DNA in a further 665 humans (Science, DOI: 10.1126/science.1245938). Both their study and the Harvard one found a hotspot of Neanderthal ancestry in genes relating to keratin, a fibrous protein found in our hair, skin and nails.
One of the genes, BNC2, is involved in skin pigmentation. That implies that Eurasians owe their paler skins partly to Neanderthals. Light skin is an advantage at higher latitudes because it is more efficient at generating vitamin D from sunlight, so Neanderthal DNA may have helped modern humans to adapt to life outside Africa.
If so, the adaptation took thousands of years to become universal. A third study published this week describes a DNA analysis of one person who lived in Stone Age Europe about 7000 years ago – 40,000 years after any Neanderthal interbreeding. His genes suggest his skin was dark (Nature, doi.org/q74). It may be that the Neanderthal keratin affected early Eurasians’ hair instead, perhaps straightening it.
…
Neanderthal DNA is irregularly spaced through the modern human genome rather than being fully mixed. That implies that interbreeding occurred very rarely. Sankararaman estimates it may have happened just four times.