Aside from a small amount of water acquired by the youthful Earth in the form of hydrated silicate rocks, the great bulk of Earth’s water must have been delivered from beyond. The pummelling Earth received in its youth from asteroids and comets will have delivered the water that is so vital to life as we know it.
The problem is actually exacerbated by the collision that formed the moon. That giant impact occurred after the proto-Earth had differentiated – with the heaviest elements (such as iron and nickel) settling to our planet’s core. This means that the mantle and crust of the Earth, stripped off by the collision, would also have contained most of Earth’s water at the time.
Without the asteroid and comet collisions that have occurred since the moon’s formation, the Earth would most likely be dry and lifeless. But impacts are a stochastic, chance thing – some planetary systems will have architectures that are poorly set up from the point of view of the delivery of volatiles to any terrestrial worlds therein.
On the other hand, studies of the formation and evolution of the “hot Jupiters” – planets like Jupiter orbiting far closer to their hosts than Mercury orbits the sun – suggest that the inward migration of such planets could drag with them vast amounts of volatiles.
In those models, so much water is delivered to the inner reaches of those systems that any Earth-like planets that form are water worlds – drenched in oceans hundreds of kilometres deep.
While such worlds might well be teeming with life, it is unlikely that it would be easy to detect. Indeed, without continents, the oceans could be almost completely lifeless, with the only source of nutrients being volcanoes on the ocean floor.
If life on such water worlds did exist, it might be so deeply buried in the ocean that any sign of it would be extremely challenging to detect, particularly from a distance measured in tens or hundreds of light-years. As such, ocean worlds would most likely be poor targets for the initial stages of the search for life elsewhere.
Like this:
Like Loading...
Read more