Read morePrevious studies had found that microbes could thrive at the boundary where oil and water meet in nature, helping to break down the oil. However, investigators had thought oil was too toxic for life, and that the levels of any water inside the oil were below the threshold for life on Earth.
“Oil was considered to be dead,"said lead study author Rainer Meckenstock, an environmental microbiologist at Helmholtz Zentrum München in Germany.
Now scientists have found microbes active within Pitch Lake, dwelling inside water droplets as small as 1 microliter, about one-fiftieth the size of an average drop of water. "Each of these water droplets basically contains a little mini-ecosystem,"study co-author Dirk Schulze-Makuch, an astrobiologist at Washington State University in Pullman, told Live Science.
These droplets contain a diverse group of microbial species that are breaking the oil down into a variety of organic molecules. The chemistry of the droplets suggests this water does not come from rain, but from ancient seawater, or brine from deep underground.
extremophiles
Meet the electric life forms that live on pure energy
The discovery of electric bacteria shows that some very basic forms of life can do away with sugary middlemen and handle the energy in its purest form – electrons, harvested from the surface of minerals. “It is truly foreign, you know,” says Nealson. “In a sense, alien.”
Nealson’s team is one of a handful that is now growing these bacteria directly on electrodes, keeping them alive with electricity and nothing else – neither sugars nor any other kind of nutrient. The highly dangerous equivalent in humans, he says, would be for us to power up by shoving our fingers in a DC electrical socket.
To grow these bacteria, the team collects sediment from the seabed, brings it back to the lab, and inserts electrodes into it.
First they measure the natural voltage across the sediment, before applying a slightly different one. A slightly higher voltage offers an excess of electrons; a slightly lower voltage means the electrode will readily accept electrons from anything willing to pass them off. Bugs in the sediments can either “eat” electrons from the higher voltage, or “breathe” electrons on to the lower-voltage electrode, generating a current. That current is picked up by the researchers as a signal of the type of life they have captured.
“Basically, the idea is to take sediment, stick electrodes inside and then ask ‘OK, who likes this?’,” says Nealson.
At the Goldschmidt geoscience conference in Sacramento, California, last month, Shiue-lin Li of Nealson’s lab presented results of experiments growing electricity breathers in sediment collected from Santa Catalina harbour in California. Yamini Jangir, also from the University of Southern California, presented separate experiments which grew electricity breathers collected from a well in Death Valley in the Mojave Desert in California.
Over at the University of Minnesota in St Paul, Daniel Bond and his colleagues have published experiments showing that they could grow a type of bacteria that harvested electrons from an iron electrode (mBio, doi.org/tqg). That research, says Jangir’s supervisor Moh El-Naggar, may be the most convincing example we have so far of electricity eaters grown on a supply of electrons with no added food.
But Nealson says there is much more to come. His PhD student Annette Rowe has identified up to eight different kinds of bacteria that consume electricity. Those results are being submitted for publication.
Nealson is particularly excited that Rowe has found so many types of electric bacteria, all very different to one another, and none of them anything like Shewanella or Geobacter. “This is huge. What it means is that there’s a whole part of the microbial world that we don’t know about.”
Discovering this hidden biosphere is precisely why Jangir and El-Naggar want to cultivate electric bacteria. “We’re using electrodes to mimic their interactions,” says El-Naggar. “Culturing the ‘unculturables’, if you will.” The researchers plan to install a battery inside a gold mine in South Dakota to see what they can find living down there.
NASA is also interested in things that live deep underground because such organisms often survive on very little energy and they may suggest modes of life in other parts of the solar system.
Meet the electric life forms that live on pure energy
Read more "Meet the electric life forms that live on pure energy"Volcanoes help species survive ice ages: ANU study
While the study was based on Antarctica, the findings help scientists understand how species survived past ice ages in other icy regions, including in periods when it is thought there was little or no ice-free land on the planet.
Antarctica has at least 16 volcanoes which have been active since the last ice age 20,000 years ago.
The study examined diversity patterns of mosses, lichens and bugs which are still common in Antarctica today.
Professor Peter Convey from the British Antarctic Survey said around 60 percent of Antarctic invertebrate species are found nowhere else in the world.
“They have clearly not arrived on the continent recently, but must have been there for millions of years. How they survived past ice ages the most recent of which ended less than 20,000 years ago has long puzzled scientists,” Professor Convey said.
Dr. Terauds of the Australian Antarctic Division ran the analysis, and says the patterns are striking.
“The closer you get to volcanoes, the more species you find. This pattern supports our hypothesis that species have been expanding their ranges and gradually moving out from volcanic areas since the last ice age,” he said.
Volcanoes help species survive ice ages: ANU study
Read more "Volcanoes help species survive ice ages: ANU study"Read moreMiller had filled the vial in 1972 with a mixture of ammonia and cyanide, chemicals that scientists believe existed on early Earth and may have contributed to the rise of life.
He had then cooled the mix to the temperature of Jupiter’s icy moon Europa—too cold, most scientists had assumed, for much of anything to happen. Miller disagreed. Examining the vial in his laboratory at the University of California at San Diego, he was about to see who was right. As Miller and his former student Jeffrey Bada brushed the frost from the vial that morning, they could see that something had happened. The mixture of ammonia and cyanide, normally colorless, had deepened to amber, highlighting a web of cracks in the ice. Miller nodded calmly, but Bada exclaimed in shock. It was a color that both men knew well—the color of complex polymers made up of organic molecules.
Tests later confirmed Miller’s and Bada’s hunch. Over a quarter-century, the frozen ammonia-cyanide blend had coalesced into the molecules of life: nucleobases, the building blocks of RNA and DNA, and amino acids, the building blocks of proteins…
Although life requires liquid water, small amounts of liquid can persist even at –60°F. Microscopic pockets of water within the ice may have gathered simple molecules like the ones Miller synthesized, assembling them into longer and longer chains. A single cubic yard of sea ice contains a million or more liquid compartments, microscopic test tubes that could have created unique mixtures of RNA that eventually formed the first life.
If life on Earth arose from ice, then our chances of finding life elsewhere in the solar system—not to mention elsewhere in the galaxy—may be better than we ever imagined…
Cyanide is a good candidate as a precursor molecule in the life-in-a-freezer model for several reasons. First, planetary scientists suspect that cyanide was abundant on early Earth, deposited here by comets or created in the atmosphere by ultraviolet light or by lightning (once the atmosphere became oxygen rich, 2.5 billion years ago, the process would have stopped). Second, although cyanide is lethal to modern animals, it has a convenient tendency to self-assemble into larger molecules. Third, and perhaps most important, no matter how much cyanide rained down, it could become concentrated only in a cold environment—not in warm coastal lagoons—because it evaporates more quickly than water…
According to some solar evolution models, the sun was some 30 percent dimmer at that time, providing less heat to Earth. So as soon as the hail of asteroids stopped, Earth may have cooled to an average surface temperature of –40°F and a crust of ice as much as 1,000 feet thick may have covered the oceans. Many scientists have puzzled over how life could have arisen on a planet that was essentially a giant snowball…
Biebricher sealed small amounts of RNA nucleobases—adenine, cytosine, guanine—with artificial seawater into thumb-size plastic tubes and froze them. After a year, he thawed the tubes and analyzed them for chains of RNA. For decades researchers had tried to coax RNA chains to form under all sorts of conditions without using enzymes; the longest chain formed, which Orgel accomplished in 1982, consisted of about 40 nucleobases. So when Biebricher analyzed his own samples, he was amazed to see RNA molecules up to 400 bases long. In newer, unpublished experiments he says he has observed RNA molecules 700 bases long…
Vlassov and his coworkers, Sergei Kazakov and Brian Johnston, realized that the ice was driving both enzymes to work in reverse. Normally when an enzyme cuts an RNA chain in two, a water molecule is consumed in the process, and when two RNA chains are joined, a water molecule is expelled. By removing most of the liquid water, the ice creates conditions that allow the RNA enzyme to work in just one direction, joining RNA chains. The SomaGenics scientists wondered whether an icy spot on early Earth could have driven a primitive enzyme to do the same.
To investigate this, they introduced random mutations into the hairpin RNA, shortened it from its normal length of 58 bases, and even cut it into pieces—all in an effort to produce RNA enzymes that were as dodgy and imperfect as early Earth’s first enzymes likely were.
These pseudoprimitive RNA enzymes do nothing at room temperature. But freeze them and they become active, joining other RNA molecules at a slow but measurable rate. These findings inspired a theory that the first, extremely inefficient RNA enzymes got help from ice, which created an environment that encouraged short segments of RNA to stick together and behave as a single, larger RNA molecule.
“Freezing stabilizes the complexes formed from multiple pieces of RNA,” concludes Kazakov. “So small pieces of RNA could be enzymes, not just large 50-base molecules.”
… On the young Earth, pockets of liquid could have expanded into a network of channels that mixed their contents during freeze-thaw cycles, like day-night temperature changes in summer. In winter, the liquid pores would have contracted and become isolated again, returning to their separate experiments. With all the mixing, something special might eventually have formed: an RNA molecule that made rough copies of itself. And as Earth warmed, these molecules might have found a home in newly thawed seas or ponds, where something even more complex might have emerged—such as a cell-like membrane…
Those speculations are more relevant than ever, with recent discoveries of geysers on Saturn’s icy moon Enceladus and elaborate organic molecules on Titan, another Saturnian moon. Recent studies show that Mars too has vast quantities of buried ice, especially at its poles.
Curiosity Finds Evidence Of Ancient Freshwater Lake On Mars
“The chemistry of the lake would have been congenial to organisms known as chemolithoautotrophs — mineral-eaters. Whether such organisms, which thrive on Earth in exotic environments such as caves and deep-sea hydrothermal vents, actually existed on the young Mars is a question Curiosity lacks the tools to answer.”
Curiosity Finds Evidence Of Ancient Freshwater Lake On Mars
Read more "Curiosity Finds Evidence Of Ancient Freshwater Lake On Mars"