There are no great inventors of history, after all. Henry Ford didn’t invent such a fantastic product, so much as stamp his name on the engineered optimization of a supply chain. Thomas Edison didn’t invent the light bulb, he just did materials research until he found a viable product. The Wright Brothers didn’t invent an airplane, so much as improve their understanding of aeronautical principles until they could produce a proof of concept. Even the most brilliant, game-changing, turtleneck-wearing designers of today are trapped within their own particular contexts of supply chains and funding cycles, material fact, and physical laws. As ambitious young designers are finding out every week, a successfully funded Kickstarter is not a product delivered. And for those of us on the receiving end of the great technological juggernaut that our society has become, the consequences for what happens when things happen less-than-brilliantly are more dire than some negative blog reviews and a company dissolved by its investors.

Read more

So are we alone? Well, there is one other possibility, at this point. I’ve lately been trumpeting my revision of Clarke’s Law (which originally said ‘any sufficiently advanced technology is indistinguishable from magic’). My revision says that any sufficiently advanced technology is indistinguishable from Nature. (Astute readers will recognize this as a refinement and further advancement of my argument in Permanence.) Basically, either advanced alien civilizations don’t exist, or we can’t see them because they are indistinguishable from natural systems. I vote for the latter. This vote has consequences. If the Fermi Paradox is a profound question, then this answer is equally profound. It amounts to saying that the universe provides us with a picture of the ultimate end-point of technological development. In the Great Silence, we see the future of technology, and it lies in achieving greater and greater efficiencies, until our machines approach the thermodynamic equilibria of their environment, and our economics is replaced by an ecology where nothing is wasted. After all, SETI is essentially a search for technological waste products: waste heat, waste light, waste electromagnetic signals. We merely have to posit that successful civilizations don’t produce such waste, and the failure of SETI is explained. And as to why we haven’t found any alien artifacts in our solar system, well, maybe we don’t know what to look for. Wiley cites Freitas as having come up with this basic idea; I’m prepared to take it much further, however. Elsewhere I’ve talked about this particular long-term scenario for the future, an idea I call The Rewilding. Now normally one can’t look into the future; in the case of the long-term evolution of technological civilization, however, that is precisely what astronomy allows us to do. And here’s the thing: the Rewilding model predicts a universe that looks like ours–one that appears empty. The datum that we tend to refer to as ‘the Great Silence’ also provides the falsification of certain other models of technological development. For instance, products of traditionally ‘advanced’ technological civilizations, such as Dyson spheres, should be visible to us from Earth. No comprehensive search has been done, to my knowledge, but no candidate objects have been stumbled upon in the course of normal astronomy. The Matrioshka brains, the vast computronium complexes that harvest all the resources of a stellar system… we’re just not seeing them. The evidence for that model of the future is lacking. If we learn how life came to exist on Earth, and if it turns out to be a common or likely development, then the evidence for a future in which artificial and natural systems are indistinguishable is provided by the Great Silence itself.

Read more

based on Pyramid of Technology:

While some technologies are implemented immediately after being envisioned, others remain indefinitely stuck in this stage. Cold nuclear fusion, teleportation, time traveling, or human-powered wings have all been a feature of our collective imagination for some time, but due to their infeasibility, they have yet to rise to a higher level on the pyramid. Although many technologies never make it out of the envisioned stage, they are still valuable as reference points for our imaginative capacity and desire to augment our bodies and minds. More than any other, the envisioned level is a dream stage, the province of artists, poets, science fiction writers and other visionaries. Although more practically oriented people sometimes underestimate this stage, it is in fact the birth chamber of all technological innovation.

Although young children still need extensive time and effort to master reading and writing, it’s difficult to imagine modern life without it. Writing technology is so successful that we don’t even recognize it as a technology anymore. Money, clothing and agriculture are also technologies that have become invisible. While they were invented thousands of years ago, and had a noticeable impact on the lives of our ancestors, today we no longer recognize them as technology. Within the invisible stage technology moves from the conscious realm – where we recognize it as a tool that we deliberately use – into the realm of the unconscious, where it becomes an invisible partner in our existence.

Naturalized technologies have moved beyond being a vital tool or habit within our society: they are so integrated in our lives we consider them part of our human nature. Perhaps the best example of a technology that is entirely naturalized is cooking. Here, cooking doesn’t refer to specific baking technologies like the microwave, but to the basic principle of heating food. Today we think of cooking as a universal aspect of human nature, but some 200,000 years ago, when early humans first started cooking, it was an innovative new technique. Without cooking a modern human being would have to eat five kilos of raw food to get enough calories. By pre-digesting our food before it is eaten, cooking allowed us to absorb more calories from the food we ate, and to expend less energy in the process. According to the gut-brain swap hypothesis, which has been described by Aiello & Wheeler, the human digestive tract shrank while the brain grew, as successive generations of our hominid ancestors relied on cooking (Aiello & Wheeler, 1995). The work of cooking and tending a fire may have even given rise to pair bonding, marriage, the household, and even the division of labor (Wrangham, 2010). Cooking changed the course of human history. Second nature became first nature.

Since the origins of humanity we have employed technology. We are technological beings by nature (Gehlen, 1988; Plessner, 1975) and similar to the bees and the flowers that co-evolved in a symbiotic relationship – the bees spread the pollen from the flowers and help them propagate while gathering their nectar – humankind is intertwined in a co-evolutionary relationship with technology.

This brings an entirely new perspective on the relationship between people, nature and technology. While we traditionally see nature and technology as opposites, like black and white, we now learn that our technologies can be naturalized over time. Throughout human history we practiced technology to emancipate us from the forces of nature – this starts with building a roof above our heads to protect us from the rain, or wearing animal furs to survive in a colder climate – yet, as our technologies become successful they in turn constitute a new milieu, a new setting, that may eventually transform our human nature.

If we can put our minds to creating technologies that have the potential to one day mature and rise to the summit of the pyramid, this will give us a clear guideline on where we want technology to go. As these technologies mature and climb the pyramid, they will in turn transform us. Hence, we need to project the best of our humanity onto them. We will not immediately get it right. There will be pitfalls, but at least we will know where we are going. Luckily, we can already be sure of one thing: in the long run, any sufficiently advanced technology will be indistinguishable from nature.

Read more

Technology surrounds us and is an integral part of our society.  It is a tool, and it can be used for both good and bad. For me, technology is very important and most helpful – for instance I do all of my illustration on a Wacom Cintiq Companion. My general stance on technology is cautious optimism – I’m reminded of Carl Sagan who said something like: we can use our technology to destroy ourselves, or we can use it to carry us to the stars. And to continue on the Carl Sagan line of thought – my real concerns about technology is how society is increasingly depending on it yet there’s no corresponding curve in people’s understanding of it. Technology must not become this kind of magical force that people use without understanding the basic concepts that governs it. Then we have this kind of booby trapped society. Now think of what Jacob Bronowski said about science forty years ago: “Fifty years from now, if an understanding of man’s origins, his evolution, his history, his progress is not in the common place of the school books, we shall not exist”.

Read more

Taken with the company’s other robotics investments, Google’s corporate posture has become even more ambitious. Google doesn’t just want to organize all the world’s information. Google wants to organize all the world.

If there is one thing Google likes, it is changing the world. The company’s framework for societal transformation has been conditioned by the relentless decrease in cost and increase in performance of computers. They believe order-of-magnitude changes can happen quickly because they’ve seen and participated in both the rise of the commercial web and the astonishing growth of mobile computing.

To these technical changes, they attach the concept of progress, especially if Google, with its deeply held sense that it won’t or can’t be evil, is involved. As the company has matured, people like Teller seem willing to admit that perhaps all things aren’t getting better all the time. But they argue the new “goods” outweigh the new “bads,” especially if an honest accounting is made of the current alternatives.

“Google X has this experience all of the time in all of these different projects,” Teller said. People count all the problems created by our current way of life as zero because that’s what we’re used to as the societal default, he contended. Conversely, people immediately see the negatives of any new thing. “We are not deaf to those issues and we’re really eager to talk to society about how to mitigate those,” Teller said. “But part of our conversation with society is about us listening, but also trying to remind the people that we talk to that the place we’re starting from is not zero. In this case, for delivery, cars, airplanes create a very large carbon footprint and have a lot of safety issues.”

Read more

science-junkie:

Information Destruction Through History

Information the most valuable commodity in the world. All human progress depends on the accumulation and preservation of information. When information is lost, human progress suffers. This infographic displays some of the most significant loses of information human civilization has suffered.

Read more