Bill Nye: We May Discover Life on Europa

This plan does not involve landing on Europa and therefore meets the approval criteria from Posthuman Flight Club.

Start sending your empty coffee cups to NASA now, or something.

Read more

In its first stage, a small satellite about as large as a half-gallon of milk would orbit the moon. Using two highly accurate accelerometers, it could sense small changes in Europa’s gravitational field, eventually mapping the gravity of the entire surface. These detailed gravity maps could then suggest the location of watery oceans below the planet’s surface—or the openings to these oceans.

Once an ocean (or the entryway to one) was found, the probe would begin its second stage. The small satellite would release even smaller instruments over the interesting region. These “chipsats,” each no larger than a fingernail, could enter Europa’s thin atmosphere unharmed and float down to the surface.

“When there is an atmosphere, they flutter down like little pieces of paper, not like a rock,” said John West, leader of the advanced concepts team at Draper. He added that while they expect to lose some of the smaller “chipsats,” enough would be released that useful science could be performed.

Once deployed, the tiny chipsats would then send their measurements back to their orbiting mothership, which would in turn beam them back to Earth.

Read more

Cracks in Pluto’s Moon Could Indicate it Once Had an Underground Ocean

In Charon’s case, this study finds that a past high eccentricity could have generated large tides, causing friction and surface fractures. The moon is unusually massive compared to its planet, about one-eighth of Pluto’s mass, a solar system record. It is thought to have formed much closer to Pluto, after a giant impact ejected material off the planet’s surface. The material went into orbit around Pluto and coalesced under its own gravity to form Charon and several smaller moons.
 
Initially, there would have been strong tides on both worlds as gravity between Pluto and Charon caused their surfaces to bulge toward each other, generating friction in their interiors. This friction would have also caused the tides to slightly lag behind their orbital positions. The lag would act like a brake on Pluto, causing its rotation to slow while transferring that rotational energy to Charon, making it speed up and move farther away from Pluto.

“Depending on exactly how Charon’s orbit evolved, particularly if it went through a high-eccentricity phase, there may have been enough heat from tidal deformation to maintain liquid water beneath the surface of Charon for some time,” said Rhoden.
“Using plausible interior structure models that include an ocean, we found it wouldn’t have taken much eccentricity (less than 0.01) to generate surface fractures like we are seeing on Europa.”

“Since it’s so easy to get fractures, if we get to Charon and there are none, it puts a very strong constraint on how high the eccentricity could have been and how warm the interior ever could have been,” adds Rhoden. “This research gives us a head start on the New Horizons arrival – what should we look for and what can we learn from it. We’re going to Pluto and Pluto is fascinating, but Charon is also going to be fascinating.”

Based on observations from telescopes, Charon’s orbit is now in a stable end state: a circular orbit with the rotation of both Pluto and Charon slowed to the point where they always show the same side to each other. Its current orbit is not expected to generate significant tides, so any ancient underground ocean may be frozen by now, according to Rhoden.

Cracks in Pluto’s Moon Could Indicate it Once Had an Underground Ocean

Read more "Cracks in Pluto’s Moon Could Indicate it Once Had an Underground Ocean"